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Abstract
We study the polariton problem for smooth boundaries, i.e. whether or not
there exist some localized solutions of Maxwell’s equations for different types
of smooth spatial variation of complex dielectric- and/or magnetic-permittivity
tensors. For a particular dielectric permittivity profile varying according to the
hyperbolic tangent law, the singular term is mathematically strongly taken into
account in Maxwell’s equations, not in the boundary conditions. The problem
is then reduced to the canonical form of Heun’s equation possessing four regular
singular points. The solution to Heun’s equation as a power series is constructed,
and an approximate solution involving a combination of two incomplete beta-
functions is derived. Further, the exact eigenvalue solution to the polariton
problem as a series in terms of incomplete beta-functions or, equivalently, Gauss
hypergeometric functions is constructed. It is shown that the dispersion relation
for the polariton wavenumber does not depend on the interface transition layer
width, i.e. it is always exactly the same as the one derived in the limit of abrupt
interface. We conjecture that the polariton wavenumber eigenvalue depends
on either zeros of the dielectric permittivity variance profile or the poles of the
logarithmic derivative of the latter.

PACS numbers: 73.20.Mf, 73.50.Bk, 02.30.-f

1. Introduction

Surface polaritons are defined as localized electromagnetic waves propagating along the
interfaces of various media. A classical example is the plasmon polariton occurring at a
metal–dielectric interface [1]. Exciton- [2], magnon- [3], and phonon-polaritons [4] are other
important cases. From the point of view of condensed matter physics, surface waves are
stipulated by the dynamics of various quasi-particles: plasmons, excitons, magnons, phonons,

0305-4470/01/430591+08$30.00 © 2001 IOP Publishing Ltd Printed in the UK L591

http://stacks.iop.org/ja/34/L591


L592 Letter to the Editor

etc. However, from the point of view of continuous medium electrodynamics, when the light
wavelength and the wave-decay distances are much larger than the interatomic distances, such
localized waves can be treated phenomenologically via the macroscopic Maxwell’s equations
in terms of appropriate tensors of dielectric constants of the media.

Accordingly, the ‘polariton problem’ should be defined in the broad sense of the word:
whether or not there exist some localized solutions of Maxwell’s equations for different types
of smooth spatial variation of complex dielectric- and/or magnetic-permittivity tensors. Hence,
the term ‘interface’ is to be used merely to indicate 2D domains of space, i.e. surfaces in whose
neighbourhood the above-mentioned dielectric tensors substantially vary.

For time-periodic processes occurring in linear media free from external charges the
macroscopic Maxwell’s equations are reduced to a system of two coupled equations symmetric
with respect to the transposition of pairs (ε,E) and (µ,H). The important points then are
that if only one of the permittivities is spatially varied then (i) this system is split up, i.e. one
of the fields, E or H , can be determined independently, and (ii) the mentioned symmetry with
respect to the transposition (ε,E) ⇐⇒ (µ,H) is violated. These obvious observations lead to
a fundamental difference in behaviour of waves with different polarizations. Mathematically,
this is expressed in the fact that under such conditions the equations for TE- and TM-modes
are essentially different. For instance, if the medium is isotropic, dielectric permittivity varies
along only one spatial coordinate, say z′, and the magnetic permittivity being everywhere
constant, ε̃ = ε̃

(
z′), µ = const (ε̃ is the complex dielectric permittivity), then the equation for

the TM-electromagnetic wave will include an additional term proportional to the logarithmic
derivative of the dielectric permittivity. Despite external simplicity, this term induces an
additional singularity into the problem in the regions where ε̃(z′) passes through zero. It is
this singularity that enables the existence of waves localized in the neighbourhood of a single
interface, i.e. the polariton waves!

Because of the singular nature of this term, the abrupt transition approximation (i.e. when
the transient layer is assumed to be vanishingly thin) is used as a conventional approach in
the polariton theory (and, generally, in the TM- and mixed-waveguide-mode theory): this
singularity is actually ignored in Maxwell’s equations but is taken into account indirectly via
the boundary conditions [1–4]. Incidentally, when this term is discarded the basic equation is
reduced to the form of the one-dimensional stationary Schrödinger equation, and there exists,
of course, a well developed theory of special functions based on the hypergeometric type of
equations which possess no more than three singular points. However, when retaining the
term −∂(ln ε)/∂z′ , either an increase in the number of singular points or an increase of their
singularity rank are expected. (Of course, this is not necessarily the case for all the possible
dielectric permittivity profiles. For example, all the three planar profiles for which analytic
solutions to the polariton problem have so far been found [5] present only the simplest situation,
when neither additional singular points are introduced nor the singularity ranks of existing
singular points are changed. Moreover, most of the profiles treated so far using approximate
and/or numerical methods are also of this simple, or ‘degenerate’ in some sense, type—see,
e.g. [5] and references therein.) This point essentially complicates the situation since, until
recently, the theory of this type of equations has been developed very poorly. The only theory
which, due to intensive efforts during the last decade, has presently attained a level satisfying
practical requirements is that of the five equations of Heun’s class (see [6] and references
therein).

In the present letter, for the first time—to the best of our knowledge—we therefore
treat the polariton problem for a smooth interface via Heun’s equation. For a particular
dielectric permittivity profile varying according to the hyperbolic tangent law, we take into
account (mathematically strongly) the singular term immediately in Maxwell’s equations, not
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in the boundary conditions. The problem is subsequently reduced to the canonical form of
Heun’s equation having four regular singular points. We construct the solution to Heun’s
equation in a power series form, and derive an approximate solution involving a combination
of two incomplete beta-functions. Further, we construct the exact eigenvalue solution to
the polariton problem as a series in terms of incomplete beta-functions or, equivalently, Gauss
hypergeometric functions. Consequently, the dispersion relation for the polariton wavenumber
is shown to be absent a dependence on the transition layer width, i.e. it is always exactly the
same as the one derived in the limit of an abrupt interface.

2. Maxwell’s equations and Heun’s equation

Consider a linear medium free from external charges, so that D = εE, B = µH , and
j = σE. For time-periodic processes E,D,H,B ∼ exp(iωt), and the macroscopic
Maxwell’s equations can be written in a manner symmetric with respect to the transposition
of pairs (ε,E) and (µ,H) form (see, e.g. [5]):

�E + grad

(	ε̃

ε̃
E

)
+
ω2

c2
µε̃E = −	µ

µ
× rot E (1)

�H + grad

(	µ

µ
H

)
+
ω2

c2
µε̃H = −	ε̃

ε̃
× rot H (2)

where the complex dielectric permittivity ε̃ is defined as ε̃ = ε − i4π/ω. Let the dielectric
permittivity vary along only the spatial coordinate z′, ε̃ = ε̃

(
z′), and the magnetic permittivity

be constant, µ = const. The equations for TE- and TM-electromagnetic waves are thus:

TE-mode, E = (0, Ey, 0):

�Ey +
ω2

c2
µε̃Ey = 0 (3)

TM-mode, H = (0, Hy, 0):

�Hy − 1

ε̃

∂ε̃

∂z′
∂Hy

∂z′ +
ω2

c2
µε̃Hy = 0. (4)

Considering the solutions of equation (4) for the TM-mode presenting waves propagating
along the interface in the x-coordinate direction, Hy = H(z′) exp(ikxx), the equation forH(z′)
then takes the form

Hz′z′ − Uz′

U
Hz′ + (λ − U)H = 0 (5)

(hereafter the alphabetical subscript denotes differentiation with respect to the corresponding
variable), where, in order to unify the notations, we denote

λ = −k2
x U = −ω2

c2
µε̃(z′). (6)

Following the method of [7], let us transform equation (5), retaining its linearity, by addressing
both dependent and independent variables:

H = ϕ(z) u(z) z′ =
∫

dz

ρ(z)
. (7)

This results in

uzz +

(
2
ϕz

ϕ
+
ρz

ρ
− Uz

U

)
uz +

[
ϕzz

ϕ
+
ϕz

ϕ

(
ρz

ρ
− Uz

U

)
+
λ − U

ρ2

]
u = 0 . (8)
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Now, we require the obtained equation to coincide with Heun’s equation in its canonical
form [6]:

uzz +

(
γ

z
+

δ

z − 1
+

ε

z − a

)
uz +

αβz − q

z(z − 1)(z − a)
u = 0 (9)

where the parameters satisfy the Fuchsian condition, 1+ α + β = γ + δ + ε. To meet this
requirement, evidently, the following should be fulfilled:

2
ϕz

ϕ
+
ρz

ρ
− Uz

U
= γ

z
+

δ

z − 1
+

ε

z − a
(10)

(
ϕz

ϕ

)
z

+
ϕz

ϕ

(
ϕz

ϕ
+
ρz

ρ
− Uz

U

)
+
λ − U

ρ2
= αβz − q

z(z − 1)(z − a)
. (11)

The analysis of the structure of these equations suggests a search for quantities ρ,ϕ and U in
the form:

ϕ = zα1(1 − z)−α2(z − a)α3 (12)

ρ = 1

τ
zn1(1 − z)n2(z − a)n3 (13)

U = U0z
k1(1 − z)k2(z − a)k3 (14)

with τ and U0 being arbitrary constants. The parameters γ , δ, ε are then uniquely determined
from equation (10):

γ = 2α1 + n1 − k1 δ = −2α2 + n2 − k2, ε = 2α3 + n3 − k3. (15)

Further, the existence of the independent external parameter λ (spectral parameter) in equation
(11) requires the additional constraints on ρ and U :

λτ 2

ρ2
∼ p1

z2
+

p2

(1 − z)2
+

p3

(z − a)2
+

q1

z(1 − z)
+

q2

z(z − a)
+

q3

(1 − z)(z − a)
(16)

U = z2n1(1 − z)2n2(z − a)2n3

[
U1

z2
+

U2

(1 − z)2
+

U3

(z − a)2
+

V1

z(1 − z)

+
V2

z(z − a)
+

V3

(1 − z)(z − a)

]
. (17)

The parameters α1,2,3, q, α, β are then determined respectively as

α1(α1 + n1 − k1 − 1) + (λp1 − U1)τ
2 = 0

α2(α2 − n2 + k2 + 1) + (λp2 − U2)τ
2 = 0

α3(α3 + n3 − k3 − 1) + (λp3 − U3)τ
2 = 0

q = −a[α1(α2 − n2 + k2) + α2(α1 + n1 − k1) + (λq1 − V1)τ
2]

+[α1(α3 + n3 − k3) + α3(α1 + n1 − k1) + (λq2 − V2)τ
2] (18)

−αβ = +[α1(α2 − n2 + k2) + α2(α1 + n1 − k1) + (λq1 − V1)τ
2]

−[α1(α3 + n3 − k3) + α3(α1 + n1 − k1) + (λq2 − V2)τ
2]

+[α2(α3 + n3 − k3) + α3(α2 − n2 + k2) + (λq3 − V3)τ
2].

It is easy to see that the additional constraints (16), (17) and equations (12), (13), (14)
are consistent only at certain values of n1,2,3 and k1,2,3 . Among the allowed sets of these
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parameters, only a few generate physically interesting dielectric permittivity profiles. The first
such set is (n1, n2, n3) = (1, 1, 0), (k1, k2, k3) = (0, 0, 1). As can readily be shown, we then
obtain

U = U1 + (U2 − U1)z (19)

z = 1

1 + exp(− z′−z′
0

τ
)
. (20)

Transformation (20) maps the real axis z′ onto the segment z ∈ [0, 1]. In the meantime, the
dielectric permittivity profile undergoes a jump according to the hyperbolic tangent law:

ε̃ = − c2

ω2µ
U = − c2

ω2µ

(
U1 + U2

2
+
U1 − U2

2
tanh

z′ − z′
0

2τ

)
. (21)

As we see, the width of the transition layer is determined by the parameter τ . Now, the
parameters of the problem are explicitly determined by the spectral parameter as follows:

α2
1,2 = (−λ + U1,2)τ

2 α3(α3 − 2) = 0 a = U1

U1 − U2
(22)

γ = 1 + 2α1 δ = 1 − 2α2 ε = −1 (23)

α = β = α1 − α2 q = a[(α1 − α2)
2 + (α1 − α2)] − α1. (24)

A solution of Heun’s equation (9) can be constructed as a power series:

u =
∞∑
n=0

anz
n. (25)

For the series coefficients the following three-term recurrence relation holds:

anan[n − 1 + γ ] − an−1[(1 + a)(n − 1)(n − 2) + (γ (1 + a) + aδ + ε)(n − 1) + q]

+an−2[(n − 2)(n − 3) + (γ + δ + ε)(n − 2) + αβ] = 0 n � 0 (26)

a−2 = a−1 = 0 a0 = 1 a1 = q

aγ

and the analysis of which shows that for | a |< 1, series (25) converges, generally speaking,
only for z ∈ [0, | a |] [6]. The solution for z ∈ [| a |, 1] can be constructed by analytical
continuation using substitution z ��� 1−z. Further, the Poincare-Perron theory of augmented
convergence [6] suggests a particular value for the spectral parameter λ (and thereby the
polariton wavenumber kx) at which the series (25) converges everywhere in z ∈ [0, 1]. This
value is obtained from a relation given as an infinite fraction:

Q1 = R1P2

Q2 + R2P3

Q3+ R3P4
Q4+...

(27)

where Rn,Qn, Pn are the coefficients of the recurrent relation (26) at an, an−1, an−2,
respectively. However, it can be shown that, unfortunately, this value of the spectral parameter
does not define a bounded (at z = 0 and z = 1) solution, such that this is not the polariton-
problem eigenvalue.

Nevertheless, one can find a simple approximate solution of the problem which is valid
at small thicknesses of the transition layer. This solution is easy to obtain by noting that
parameters q and αβ quadratically depend on τ , while the others depend linearly. Then,
proceeding to the normal form of equation (9), one can be convinced that the last term of
Heun’s equation is small at τ → 0, and, therefore, may be neglected. In this case, the solution
of equation (9) is written out in closed form using incomplete beta-functions [8]:

u = C1[aBz(−2α1, 2α2) − Bz(1 − 2α1, 2α2)] + C2 (28)
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where one must choose Re[α1] < 0, Re[α2] > 0. To fulfil the boundary condition
u(z = 0) = 0, we assign C2 = 0. Then the value of u(z) at z = 1 is expressed in terms
of gamma-functions:

u(1) = C1

(
a − α1

α1 − α2

)
+(−2α1)+(2α2)

+(2(α2 − α1))
. (29)

Therefore, to achieve the last boundary condition u(z = 1) = 0, one should put

(a − 1)α1 − aα2 = 0. (30)

As is easily verified, this condition results in the well known formula for the polariton
wavenumber [1] valid in the limit of an abrupt boundary:

k2
x = ω2µ

c2

ε1ε2

ε1+ε2
. (31)

(Note that if α1,2 are real then, in order to provide α1 < 0 and α2 > 0, a must satisfy
(a − 1)/a < 0 (see (30)), i.e. 0 < a < 1. In terms of permittivities, a ∈ [0, 1] is equivalent
to ε1ε2 < 0 and ε1 + ε2 < 0, which are the well known conditions for the existence of the
polariton [1].)

Further, we will now show that, in fact, relation (30) exactly defines the dispersion relation
for the polariton independently of τ .

3. The solution of the eigenvalue problem

In order to show that relation (30) indeed defines the eigenvalue, first note that this equation is
equivalent, in our case (see (24)), to the following relation between the parameters of Heun’s
equation:

q − aαβ = 0. (32)

Indeed, this is a crucial point since for this particular case it is possible to derive an integral
representation for solutions to Heun’s equation (9), namely

u =
∫

z−γ (z − 1)−δ(z − a)−εw(z) dz (33)

where w(z) is a solution to another, modified, Heun’s equation:

wzz +

(
1 − γ

z
+

1 − δ

z − 1
+

2 + ε

z − a

)
wz +

αβz − q

z(z − 1)(z − a)
w = 0. (34)

This can be simply checked by taking the derivative of (9) and subtracting (9) (multiplied by
a factor (1/z + 1/(1 − z))) from the obtained equation.

Now, take the power series solution to the last equation:

w− =
∞∑
n=0

a−
n z

n. (35)

Here the coefficients a−
n are defined by the three-term recurrence relation (26), the parameters

γ, δ, ε there now being replaced, according to (34), respectively, by 1 − γ, 1 − δ, 2 + ε.
Substituting series (35) into (33) and integrating term-by-term we finally arrive at the following
final expression in terms of combinations of incomplete beta-functions (compare with (28))

u−(z) = C−
1

∞∑
n=0

a−
n [aBz(−2α1 + n, 2α2) − Bz(1 − 2α1 + n, 2α2)] + C−

2 . (36)
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Using the representation of the incomplete beta-function in terms of the Gauss hypergeometric
function [8], one may express this solution in a more convenient form of hypergeometric
function series. In order to meet the boundary condition Hy(z = 0) = 0, we put C−

2 = 0.
Thus, a solution to the initial polariton problem, valid for z ∈ [ 0, | a |], is given by

H−
y = zα1(1 − z)−α2u−(z). (37)

The corresponding solution for z ∈ [| a |, 1] is written in the same way, after preliminary
transformation of (34) by substitution z → 1 − z:

u+(1 − z) = C+
1

∞∑
n=0

a+
n [(1 − a)B1−z(2α2 + n,−2α1) − B1−z(1 + 2α2 + n,−2α1)] + C+

2 (38)

so that a solution to the polariton problem, valid for z ∈ [| a |, 1], is given by

H +
y = zα1(1 − z)−α2u+(1 − z). (39)

Finally, demanding continuity for the solution and its first derivative at point z = a, we derive

C+
1 = C−

1 u
−(a)/u+(1 − a) C+

2 = 0. (40)

It is now easy to verify that H +
y (z = 1) = 0. Consequently, the derived solution, (36)–

(40), presents the exact eigensolution to the polariton problem for the particular dielectric
permittivity profile varying according to the hyperbolic tangent law1. Hence, relation (30) is
the exact equation for the polariton wavenumber eigenvalue. This eigenvalue, in turn, is given
by (31). As may be seen, it does not depend on the interface transition layer thickness, τ .
However, the analysis of the very derivation method which led to this conclusion immediately
suggests that the result extends beyond the hyperbolic-tangent model: the eigenvalue does
not depend on the permittivity profile at all or, more precisely, it should depend only on some
general characteristics of the profile (as the above parameter a), not the exact shape. This is the
main physical result of the present paper. This conclusion does sound rather counterintuitive
since it is basic knowledge that the behaviour of the polariton is defined by the permittivity
shape only [see, e.g. [1,5]]. Obviously, more investigations are needed to clarify the situation;
however, at least two immediate conjectures could explain this contradiction: (i) the polariton
wavenumber eigenvalue depends on the number and position of zeros of the permittivity profile
or (ii) it depends on the number and position of poles of the logarithmic derivative of the profile.
It is our clear intention to test these suppositions in the near future.

4. Summary

We have shown that the polariton problem for a smooth interface having a dielectric permittivity
profile varying according to an hyperbolic tangent law reduces to the canonical form of Heun’s

1 Note that at large distances from the interface the magnetic field amplitude decays exponentially along the direction

perpendicular to the surface. Indeed, at z′ → −∞ we have z ∼ exp
(
z′−z′0
τ

)
(see (20)) so that

H−
y ∼ z−α1 ∼ exp


ω

c

√
µ

−ε2
1

ε1+ε2
(z′ − z′

0)


 .

Similarly, at z′ → +∞, z ∼ 1 − exp
(
− z′−z′0

τ

)
and

H +
y ∼ (1 − z)α2 ∼ exp


−ω

c

√
µ

−ε2
2

ε1+ε2
(z′ − z′

0)


 .
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equation possessing four regular singular points, and have constructed the exact eigenvalue
solution to the initial polariton problem as a series in terms of incomplete beta-functions or,
equivalently, Gauss hypergeometric functions. Hence, the exact dispersion relation for the
polariton wavenumber was derived, a result that does not depend on the transition layer width.
Our conjecture is that the polariton wavenumber eigenvalue depends on either the zeros of the
dielectric permittivity variance profile or the poles of logarithmic derivative of the latter.

It is noteworthy to mention that several other profiles can also be examined using Heun’s
equation. In particular, one such profile describes a three-layer structure which is of practical
importance [1, 2], and another presents a specific four-layer system. Besides a thorough test
of the above conjectures, we also hope to study the polariton problem for these profiles in the
nearest future.
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